Search results for " Shakedown"
showing 10 items of 23 documents
SHAKEDOWN ANALYSIS BY BEM
2000
In the ambit of the symmetric Galerkin boundary element formulation the statical shakedown load multiplier and the limit analysis are reformulated making use of macrozone modelling. The subdivision of the domain into macroelements makes it possible to deal with piecewise homogeneous materials of the body. For each macroelement a discretization of the boundary and a subdivision of the domain into portions called cells are performed in order to introduce the unknowns (i.e. traction and displacement discontinuities) on the boundary and material plastic laws appropriately interpolated. The weighed regularity imposed between adjacent macroelements produces algebraic operators which are symmetric…
Dynamic shakedown of structures with variable appended masses and subjected to repeated excitations
1996
Elastic shakedown for discrete, or finite-element discretized, structures subjected to combinations of static and time-variable loads is addressed in the hypothesis of elastic-perfectly plastic material behavior. The static load is conceived as the weight of an additional mass appended to the structure, whereas the time-variable load is conceived as an unknown sequence of excitations belonging to a specified domain, with intervals between subsequent excitations during which the structure is considered as being motionless. It is shown that, in the plane of the static and time-variable load parameters, the structure's dynamic shakedown domain is nonconvex and that its boundary curve generally…
An extended shakedown theory for elastic-plastic-damage material models
1996
Internal variable elastic-plastic-damage, or elastic-damage, material models endowed with free energy are considered. Referring to a structure of such a material subjected to loads varying inside a given domain, the classical notion of (elastic) shakedown is widened to signify that the structure eventually responds to the loads in an elastic manner after certain (finite) amounts of plastic strain and/or damage have been produced. For structures fulfilling an ad-hoc D-stability requisite, an extended shakedown theorem is presented as a generalization of the classical Melan theorem to nonlinear elasticity and damage - besides nonlinear hardening. For common materials exhibiting linear elastic…
MULTICRITERIA OPTIMAL DESIGN OF CONTINUOUS CIRCULAR PLATES
2010
The paper is devoted to a quite general version of the multicriteria optimal (minimum volume) design of axisymmetric circular plates. The constitutive material is considered as elastic perfectly plastic without any ductility limit and the actions are assumed as quasi-statically variable within a given load domain. In the design problem formulation different resistance criteria are considered, in order to investigate all the possible structural limit responses, and for each one a suitably chosen safety factor is chosen. The optimal design problem is formulated as the search for the minimum structure volume according with a statical approach. The features of the optimal structures will be stu…
Reliable measures of plastic deformations for elastic plastic structures in shakedown conditions
2020
A new formulation for evaluating reliable measures of the plastic deformations occurring in the transient phase of a structure in shakedown conditions is proposed. The structure is thought as constituted by elastic perfectly plastic material and subjected to a combination of fixed and cyclic loads. The proposed formulation consists in the search for the optimal plastic strain field that minimize a suitable objective function defining a strain energy measure related to the plastic strains at the shakedown limit. The typical self-stress field can be obtained as the elastic structural response to an assigned plastic strain field respecting appropriate ductility limits for the material. Without…
Influence of protecting devices on the optimal design of elastic plastic structures
2008
The paper concerns the minimum volume design of structures constituted by elastic perfectly plastic material. The relevant optimal design problem is formulated on the grounds of a statical approach and two different resistance limits are considered: in particular, it is required that the optimal structure satisfies the elastic shakedown limit and the instantaneous collapse limit, imposing for each different condition a suitably chosen safety factor. For sake of generality, the structure is thought as discretized into compatible finite elements and subjected to loads quasi-statically acting as well as to dynamic (seismic) loads. The effects of the dynamic actions are studied on the grounds o…
Dynamic shakedown of structures under repeated seismic loads
1995
Elastic, perfectly plastic structures are considered under the action of repeated short-duration exitations of seismic type acting in an unknown time sequence, but belonging to a given polyhedral excitation domain. The basic excitations (vertices of the polyhedron) are chosen as discrete-spectrum waves each with frequencies coincident with the first natural frequencies of the structure, and amplitudes related to the ground features and earthquake intensity (according to the Kanai and Tajimi filter model) in such a way that every admissible excitation-obtained as a linear convex combination of the basic ones-has a maximum power not exceeding a given value. In the framework of unrestricted dy…
Reliability-based design optimization of trusses under dynamic shakedown constraints
2019
A reliability-based design optimization problem under dynamic shakedown constraints for elastic perfectly plastic truss structures subjected to stochastic wind actions is presented. The simultaneous presence of quasi-static (cyclic) thermal loads is also considered. As usual in the shakedown theory, the quasi-statical loads will be defined as variable within a deterministic domain, while the dynamic problem will be treated considering an extended Ceradini-Gavarini approach. Some sources of uncertainties are introduced in the structural system and in the load definition. The reliability-optimization problem is formulated as the minimization of the volume of the structure subjected to determi…
Evaluation of the shakedown limit load multiplier for stochastic seismic actions
2017
A new approach for the evaluation of the shakedown limit load multiplier for structures subjected to a combination of quasi-statically variable loads and seismic actions is presented. The common case of frame structures constituted by elastic perfectly plastic material is considered. The acting load history during the lifetime of the structure will be defined as a suitable combination of never ending quasi-statical loads, variable within an appropriate given domain, and stochastic seismic actions occurring for limited time interval. The proposed approach utilizes the Monte Carlo method in order to generate a suitable large number of seismic acceleration histories and the corresponding shake…
Analysis and design of elastic plastic structures subjected to dynamic loads
In the last decades, the concept of “optimization” has reached considerable value in many different fields of scientific research and, in particular, it has assumed great importance in the field of structural mechanics. The present study describes and shows the scientific path followed in the three years of doctoral studies. The state of the art concerning the optimization of elastic plastic structures subjected to quasi-static loads was already well established at the beginning of the Ph.D. course. Actually, it was already faced the study of structures subjected to quasi-static cyclic loads able to ensure different structural behaviors in relation to different intensity levels of the appli…